
International Journal of  Theoretical Physics, VoL 36, No. 1, 1997 

Lappo-Danilevsky Hyperlogarithm and Period of 
Calabi-Yau Manifold 

Yfiji O h t a  I 

Received July 8, 1996 

We discuss the period of complex structure modulus space for a degree-(n + 1) 
Calabi-Yan hypersurface embedded in complex n-dimensional projective space 
el ~, in view of a higher logarithm expansion. The main result is that the periods 
have Lappo-Danilevsky-type hyperlogarithmic structure. 

1. INTRODUCTION 

The Picard-Fuchs equation has appeared in several areas in mathemati- 
cal physics. For example, it played a central and important role in extracting 
nonperturbative information in the mirror symmetry (Yau, 1992) of, e.g., the 
Calabi-Yau quintic hypersurface embedded in complex four-dimensional 
projective space CP 4 (Candelas et  al.,  1991), and similarly in recent studies 
of N = 2 supersymmetric Yang-Mills gauge theories (Seiberg and Witten, 
1994a,b; Ito and Yang, 1996; Ohta, 1996a, b). As for the former, the Picard- 
Fuchs equation was a fourth-order ordinary differential equation and it turned 
out that it was equivalent to a certain generalized hypergeometric differential 
equation (Candelas e t  al. ,  1991). From several other examples (Font, 1993; 
Klemm and Theisen, 1993), we already know that the period integrals of 
Calabi-Yau manifolds with complex structure moduli can be expressed simi- 
larly by the generalized hypergeometric function. 

On the other hand, Lappo-Danilevsky (1958) discussed the hyperloga- 
rithms, in his terminology, of ordinary differential equations with singularities 
by a method of successive approximation. Applying this hyperlogarithmic 
expansion to Gauss's hypergeometric equation, which can be identified with 
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the Picard-Fuchs equation of a complex one-dimensional toms, we can easily 
observe the celebrated dilogarithm in the lower order of the expansion. This 
fact leads us to suspect that the period of the Calabi-Yau manifold may 
include a certain special function. 

In this paper we develop the connection of the Lappo-Danilevsky hyper- 
logarithm and the period of the Calabi-Yau manifold. In Section 2 we discuss 
the Picard-Fuchs equation. In particular, we rewrite it as Fuchsian system 
of first-order differential equations with regular singularities. In Section 3 
we solve it iteratively under a certain initial condition. We find that the 
solution' i.e., the generalized hypergeometric function, can be expressed by 
Lappo-Danilevsky-type hyperlogarithms. It turns out that the leading behavior 
is governed by a classical polylogarithm. In Section 4, we discuss its mono- 
dromy. Section 5 is a brief summary. 

2. FUCHSIAN SYSTEM 

The Calabi-Yau manifolds ~t which we consider in this paper are 
families of Fermat-type hypersurfaces embedded in CP n (n > 1). The defini- 
tion of dlL is the zero locus of 

n + l  n + l  

1 ~ ~ + '  - d~ [-[ xi (2.1) W(x, , )  - n +~1 i=~ i ~  

where the xi are local coordinates of C1 ~ a n d ,  E C is a complex structure 
moduli. The numerical factor 1/(n + l) is for convenience. 

The complex structure modulus space is described by period integrals 
(Lerche et al., 1992) of globally nonvanishing holomorphic (n - 1)-form 
defined by 

II = ~ dl~ (2.2) d , W(x, ~) 
where 

n + l  A 

dl~ = ~ ( -  1)ixi dXl  A " ' "  A d x  i A " ' "  A d x n +  1 ( 2 . 3 )  
i=1 

and ~/ is the canonical representative of Hn-~(~). Here the wedge sign 
denotes omission. 

A technique to evaluate (2.2) is available (Berglund et al., 1994), but 
in some cases it is better to solve the Picard-Fuchs equation rather than make 
a direct calculation of (2.2). In particular, from several examples (Candelas et 
al., 1991; Font, 1993; Klemm and Theisen, 1993; D'Auria and Ferrara, 1994), 
we are familiar with the fact that (2.2) can be expressed by the generalized 
hypergeometric function, whose definition is given by 
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(al)k - . -  (a~)k z k 
pFq(Otl . . . . .  % ;  ~1 . . . . .  ~q; z)  ---- ~f, k=o (131)k (13q)k k ! '  Izl < 1 

(2.4) 

where  (*)i = F(* + i)/F(*) is the P o c h h a m m e r  symbol  (Slater, 1966), 
This geometr ic  series can be characterized as a solution 11 o to the 

fol lowing differential equation: 

ZZz.= Z Z z z + ~ i - I - z =  ZZzz+~, �9 110--0 (2.5) 

where p = q + 1 and p = n. Then the solutions near qJ = 0 can be obtained 
with the fol lowing identifications: 

1 i + 1  
Ot 1 . . . . .  Otp p + 1 ' 13i p + 1 ' Z = ~ .+l ,  I I  = I I  o 

(2.6) 

On the other hand, those near  ~ = co, which is called the large-radius limit, 
can be obtained with 

i 
13~ . . . . .  ~3q = 1 ,  a i  - , z = ~ , - ~ . + 1 ) .  17  = z~ t<"+~q- lo  

p + l  
(2.7) 

Let  us try to rewrite (2.5) as a sys tem o f  first-order Fuchsian differential 
equations.  For this purpose,  we  define 

dII i  
IIi+l = z d z  ' i 0 . . . . .  p 2 (2.8) 

It is easy to find that (2.5) is equivalent  to the fol lowing matrix differen- 
tial equat ion 

d I I  _ _ z ) I I  (2.9) -~-z - (~2 + 1 A2 

where  I I  = t(IIo . . . . .  I-Ip_l), both AI and A2 are p • p constant  matr ices  
given by  

A 1 

0 1 0 . . . . . .  0 
�9 . . .  . . .  - . .  

.: - . .  - . .  - . .  .: 

" "-. "'. 0 

0 . . . . . . . . .  0 1 
0 - t p - i  . . . . . . . . . .  tl 
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A 2 = 

0 0 . . . . . . . . .  0 t 
�9 . . .  . . .  

�9 : . . .  . . .  | 

�9 . . .  . . .  �9 

0 . . . . . . . . .  0 0 
Sp Up-- 1 . . . . . . . . .  t l  1 

(2.10) 

and 

U k -~ S k - -  t k 

P 

Si  ~" E OLkl ' ' "  CLki ( 2 . 1 1 )  
k i > ' " > k l  = 1 

p - 1  

t~ = ~ (13k~- 1) ' ' ' (13k,--  1) 
k i> . . .>k l  = l 

3. H Y P E R L O G A R I T H M  AND P E R I O D  

We can easily solve (2.5) by a standard Frobenius method, but we would 
like to solve it recursively in order to see the logarithmic structure of the 
solution. In this and subsequent discussions, we discuss the behavior only 
near z = 0 (~,§ = 0), unless otherwise noted. 

Since we know that the solution to (2.9) is (2.4), we can find by using 
the definition (2.8) that the initial conditions at z = 0 for  this system are 
given by 

Ho = 1, Hi = 0, i = 1 . . . . .  p -  1 (3.1) 

Integrating (2.9) with (3.1), we obtain the integral representation of (2.9) 

Io(  II  = 11o + + II  dx (3.2) 

where II0 = t(1, 0 . . . . .  0) is a p • 1 column matrix. Do not confuse the 
boldface letter (II0) with the lightface one (IIo). 

Solving (3.2) iteratively, we find that H can be obtained as a convergent 
series near the origin of C p§ (Lappo-Danilevsky, 1958) and it can be analyti- 
cally continued to any region in C - {0, 1 }. The result is 
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p--I p - I  

II0(z) = 1 + spLip(Z) + $2Lp,p(Z) + Sp ~ uiLi,p(Z ) - Sp ~ tiLii+p(Z ) + . . .  
i= l  i= l  

(3.3) 

and f o r k =  1 . . . . .  p -  1, 

p - I  p - I  

IIp-k(Z ) = SpLik(Z) q- S2Lp,k(Z) + Sp ~ uiLi,k(Z ) -- Sp ~ tiLii+k(Z ) 
i= l  i = l  

(3.4) 

where Lik(Z) is the polylogarithm (see Appendix) and 

' xk_  i : T 1  (3.5) 

k times 

Note that the expansion coefficients, e.g., Li~ or Li.k, are absolute convergent 
functions; therefore the Hi are indeed convergent series. The expansion coeffi- 
cients are often called Lappo-Danilevsky hyperlogarithms. Originally, Lappo- 
Danilevsky discussed various properties of hyperlogarithms in the context 
of systems of singular differential equations (Lappo-Danilevsky, 1958), but 
explicit examples of hyperlogarithm expansions for various singular differen- 
tial equations such as the generalized hypergeometric system, the Appell, or 
the Lauricella system do not seem to have appeared. 

Since we know that the fundamental period for complex structure moduli 
space of the Calabi-Yau manifold corresponds to the fundamental solution 
to the Picard-Fuchs equation (Candelas et a l., 1991; Font, 1993; Klemm and 
Theisen, 1993, D'Auria and Ferrara, 1994) up to overall numerical factor, 
we can immediately conclude that the leading behavior of II in this hyperlo- 
garithm expansion is controlled by Lip(Z) and the higher order terms can be 
constructed from Lip(z). Note that the index p of Lip corresponds to the 
dimension of the ambient space CP p. 

From the algorithm of successive approximation, it is easy to observe 
that II 0 can be written as 

oil) i--~O a2 "'" IIo(z) = l + V, F i  0 "'" z (3,6) 

where the V/are some polynomial of s, ,  t ,  and 

Fi bl b2 "'" bi / i x - a  i bl "'" bi-1 
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or equivalently, 

( : : ' " a i l )  ' '" u f l  dXi fb c 3 d x 2  fl 2 dX1 Fi Li  Z . . . .  
Xi ~ ai x2 -- a2 Xl -- al  

i 2 1 

i t~mes 
The a ,  are 0 or 1 due to the order of iterate integration. 

- -  ( 3 . 8 )  

4. M O N O D R O M Y  

Let us consider the monodromy. From the theory of ordinary differential 
equations, we know that there is no nontrivial monodromy around z = 0 
(tl~ +l = 0) for the fundamental solution (period). However, as the fundamental 
period II is now expanded by logarithmic functions, the effect of  z --> 
e2~i .z  cannot be ignored for higher order terms. Therefore in view of the 
hyperlogarithm expansion we must treat the monodromy carefully even for 
z = 0. Note that this situation is very different from the usual convergent 
series expansion. 

First, recall Wechsung's theorem (Wechsung, 1991), which says that the 
hyperlogarithms transform as 

(1  a2 "'" ~ 1 )  (0  ~ a2 "'" 0 i )  Fi 0 "'" Z -"> Fi 0 "'" Z + AkFi (4.1) 

under the deformation of the path starting at a point z and going around ak 

(and not around an, n :/: k) counterclockwise. Here, 

AkFi (1 a 2 " ' "  ~k-1  ~ f ak+ l  " ' "  a i  Z~ (4.2) 

However, we are in the situation that some of a ,  coincide because of  
a ,  = 0 or 1. In order to include the contribution from this coincidence, we 
should modify (4.1) as 

t,(0 a 2  0i[) a 2  0il) 0 " "  z --> Fi 0 " "  z + ~ AkFi  (4.3) 
k 

where the summation is over all coincident singular points. 
Consequently, it follows that 

oo 

[I ---> 1-I + ~ ~ ViAkF i (4.4) 
i=0 k 

However, since the fundamental period must be invariant under the mono- 
dromy around z = 0, as mentioned above, the second term of (4.4) must be 
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~, V~AkFi = 0 (4.5) 
i=0 k 

Similar relations hold for other singularities. 

5. SUMMARY 

In this paper, we treated a degree-(n + 1) Calabi-Yau Fermat-type 
hypersurface At embedded in CI ~ with one complex structure modulus. We 
showed that the period of complex structure modulus space can be expressed 
by Lappo-Danilevsky-type hyperlogarithms. Using this method, we showed 
that the polylogarithm Lin originates from the period of At. 

Though we treated only simple cases, i.e., one complex structure modulus 
models, it will be easy to extend the analysis to several complex modulus 
models and so on. The description by hypedogarithms may not give any new 
aspects of the underlying physics, but it will be helpful for understanding the 
mathematical background of the modulus space of the Calabi-Yau manifold. 

APPENDIX. POLYLOGARITHM 

In this appendix, we briefly review the polylogarithm for the nonspecial- 
ist. The reader interested in more details should refer to Lewin (1958, 1991). 

In the late seventeenth century, Leibnitz defined the dilogarithm by 

Z2 Z 3 
Li2(z ) = + ~ + ~ + " " ,  I zl --< 1 

This series has an integral representation 

Io : ln(1 - x) 
Li2(z) = -- dr 

X 

= 7 

(A.1) 

(A.2) 

The right-hand side of (A.2) suggests that Li2(z) can be analytically continued 
to any region of C - {0, 1 }. Moreover, since both (indefinite) integrals of 
llz and 1/(1 - z) give a logarithm, Li2(z) is called the "dilogarithm." 

We can generalize Li2(z) in a natural way. For example, the function 
Lin(Z) defined by 

Z Z 2 Z 3 
Lin(z) = in + ~-~ + ~ + " " ,  I zl ----- 1 (A.3) 

is called the polylogarithm. When n = 1, Lil(z) coincides with - ln(1 - z). 
In the case of n = 3, it is called the trilogarithm. 
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Lin(z) can be recursively defined by 

Li~(z) = I z Li~_l(X) dx 
Jo x 

For the monodromy of the polylogarithm, see Ramakrishnan (1982). 

(A.4) 
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